Лекция 10. Преобразование речи в текст и наоборот
В этой главе вы узнаете о важности преобразования речи в текст и преобразования текста в речь. Вы также узнаете о функциях и компонентах, необходимых для этого типа преобразования.
В частности, я расскажу о следующем:
· Почему вы хотели бы преобразовать речь в текст
· Речь как данные
· Речевые функции, отображающие речь в матрицу
· Спектрограммы, отображающие речь в изображение.
· Создание классификатора для распознавания речи с помощью
· Особенности кепстрального коэффициента мел-частоты (MFCC)
· Создание классификатора для распознавания речи с помощью спектрограммы
· Подходы с открытым исходным кодом для распознавания речи
· Популярные поставщики когнитивных услуг.
· Будущее речи текста

10.1. Преобразование речи в текст
Преобразование речи в текст, с точки зрения непрофессионала, означает, что приложение распознает слова, произнесенные человеком, и преобразует голос в письменный текст. Есть много причин, по которым вы хотели бы использовать преобразование речи в текст.
· Слепые или люди с ограниченными физическими возможностями могут управлять разные устройства, используя только голос.
· Вы можете вести записи встреч и других событий, преобразование устного разговора в текстовую расшифровку.
· Вы можете конвертировать аудио в видео и аудио файлы и получить субтитры произносимых слов.
· Вы можете переводить слова на другой язык, говорить в устройство на одном языке и конвертировать текст в речь на другом языке.

10.1.1. Речь как данные
Первым шагом в создании любой автоматизированной системы распознавания речи является получение функций. Другими словами, вы определяете компоненты звуковой волны, полезные для распознавания лингвистического содержания, и удаляете все остальные бесполезные функции, представляющие собой просто фоновые шумы.
Речь каждого человека фильтруется формой голосового тракта и также языком и зубами. Какой звук выходит, зависит от этой формы. Чтобы точно определить воспроизводимую фонему, вам необходимо точно определить эту форму. Можно сказать, что форма речевого тракта проявляется в форме огибающей кратковременного спектра мощности. Задача MFCC — точно представить эту оболочку.
Речь также может быть представлена ​​в виде данных путем преобразования ее в спектрограмма (рис. 10-1).
[image:]
Рисунок 10-1. Речь как данные
10.1.2. Особенности речи: сопоставление речи с матрицей
MFCC широко используются в автоматизированном распознавании речи и говорящих.
Мел-шкала соотносит воспринимаемую частоту или высоту звука чистого тона с его фактической измеренной частотой.
Вы можете преобразовать звук в частотной шкале в меловую шкалу, используя следующую формулу:
M(f) = 1125 ln (1+ f/700)
Чтобы преобразовать его обратно в частоту, используйте следующую формулу:
 	М-1(m) = 700 (ехр (m/1125) -1)
Вот функция для извлечения функций MFCC в Python:
def mfcc (signal, samplerate = 16000, winlen = 0,025, winstep = 0,01,
numcep = 13, nfilt = 26, nfft = 512, lowfreq = 0, highfreq = None,
preemph = 0,97, ячейка = 22, appendEnergy = True)

Вот используемые параметры:
· signal: это сигнал, для которого необходимо рассчитать характеристики MFCC. Это должен быть массив N*1 (читай WAV-файл).
· samplerate: это частота дискретизации сигнала, с которой вы работаете.
· winlen: длина окна анализа в секундах. По умолчанию это 0,025 секунды.
· winstep: Это последовательный шаг окна. По умолчанию это 0,01 секунды.
· numcep: это число цепрумов, которое должна вернуть функция. По умолчанию это 13.
· nfilt: количество фильтров в банке фильтров. По умолчанию это 26.
· nfft: Это размер быстрого преобразования Фурье (БПФ). По умолчанию это 512.
· lowfreq: это самый низкий край диапазона в герцах. По умолчанию это 0.
· highfreq: Это самая высокая граница диапазона в герцах. По умолчанию это частота дискретизации, деленная на 2.
· preemph: применяется фильтр предыскажения с предыскажением в качестве коэффициента. 0 означает отсутствие фильтра. По умолчанию это 0,97.
· ceplifter: Применяет подъемник к окончательным кепстральным коэффициентам. 0 означает отсутствие подъемника. По умолчанию это 22.
· appendEnergy: Нулевой кепстральный коэффициент заменяется логарифмом полной энергии кадра, если для него установлено значение true.
Эта функция возвращает массив Numpy, содержащий функции. Каждая строка содержит один вектор признаков.
10.2. Спектрограммы: сопоставление речи с изображением
Спектрограмма — это фотографическое или электронное представление спектра.
Идея состоит в том, чтобы преобразовать аудиофайл в изображения и передать изображения в модель глубокого обучения, такие как CNN и LSTM, для анализа и классификации.
Спектрограмма вычисляется как последовательность БПФ сегментов данных с окном. Распространенным форматом является график с двумя геометрическими измерениями; одна ось представляет время, а другая ось представляет частоту. Третье измерение использует цвет или размер точки для обозначения амплитуды определенной частоты в определенное время. Спектрограммы обычно создаются одним из двух способов. Их можно аппроксимировать как банк фильтров, который является результатом ряда полосовых фильтров. Или в Python есть прямая функция, которая сопоставляет звук со спектрограммой.
Создание классификатора для распознавания речи
Через функции MFCC
Чтобы создать классификатор для распознавания речи, вам необходимо установить пакет Python python_speech_features.
Вы можете использовать команду pip install python_speech_features для
установить этот пакет.
Функция mfcc создает матрицу признаков для аудиофайла. Чтобы построить
классификатор, распознающий голоса разных людей, необходимо собрать речевые данные о них в формате WAV. Затем вы конвертируете все аудиофайлы в матрицу с помощью функции mfcc. Код для извлечения функций из файла WAV показан здесь:
Если вы запустите предыдущий код, вы получите вывод в следующем виде:
[[7,66608682 7,04137131 7,30715423 ..., 9,43362359 9,11932984
9,93454603]
[4,9474559 4,97057377 6,90352236 ..., 8,6771281 8,86454547
9,7975147]
[7,4795622 6,63821063 5,98854983 ..., 8,78622734 8,805521
9,83712966]
...,
[7,8886269 6,57456605 6,47895433 ..., 8,62870034 8,79965464
9,67997298]
[5,73028657 4,87985847 6,64977329 ..., 8,64089442 8,62887745
9.90470194]
[8,8449656 6,67098127 7,09752316 ..., 8,84914694 8,97807983
9.45123015]]
Здесь каждая строка представляет один вектор признаков.
· Соберите как можно больше записей голоса человека и добавьте в эту матрицу матрицу характеристик каждого аудиофайла.
· Это будет служить набором обучающих данных.
· Повторите те же действия со всеми остальными классами.
· Как только набор данных подготовлен, вы можете поместить эти данные в любую глубокую модель обучения (которая используется для классификации) для классификации голосов разных людей.
Примечание. Чтобы просмотреть полный код классификатора, использующего функции MFCC, можно посетить www.navinmanaswi.com/SpeechRecognizer.
10.3. Создание классификатора для распознавания речи с помощью спектрограммы
При использовании подхода спектрограммы все аудиофайлы преобразуются в изображения (рис. 10-2), поэтому все, что вам нужно сделать, — это преобразовать все звуковые файлы в обучающих данных в изображения и передать эти изображения в модель глубокого обучения, как вы это делаете в и Си-Эн-Эн.
[image:]
Рисунок 10-2. Спектограмма образца речи
Вот код Python для преобразования аудиофайла в спектрограмму:
[image:]
10.4. Подходы с открытым исходным кодом
Для Python доступны пакеты с открытым исходным кодом, которые выполняют преобразование речи в текст и преобразования текста в речь.
Ниже приведены некоторые API преобразования речи в текст с открытым исходным кодом:
· Карманный сфинкс
· Google Речь
· Облачная речь Google
· Вит.ай
· Хаундифай
· API IBM для преобразования речи в текст
· Microsoft Bing Speech
Используя все это, я могу сказать, что они работают довольно хорошо; американский акцент особенно ярко выражен.
Если вы заинтересованы в оценке точности преобразования, вам нужна одна метрика: частота ошибок в словах (WER).
В следующем разделе я расскажу о каждом API, упомянутом ранее.
10.5. Примеры использования каждого API
Давайте пройдемся по каждому API.
10.5.1. Использование PocketSphinx
PocketSphinx — это API с открытым исходным кодом, используемый для преобразования речи в текст. Это легкий механизм распознавания речи, специально настроенный для портативных и мобильных устройств, хотя он одинаково хорошо работает и на настольных компьютерах. Просто используйте команду pip install PocketSphinx для установки пакета.
import speech_recognition as sr
from os import path
AUDIO_FILE = "MyAudioFile.wav"
r = sr.Recognizer()
with sr.AudioFile(AUDIO_FILE) as source:
audio = r.record(source)
try:
print("Sphinx thinks you said " + r.recognize_sphinx(audio))
except sr.UnknownValueError:
print("Sphinx could not understand audio")
except sr.RequestError as e:
print("Sphinx error; {0}".format(e))
=== ====== ======
10.5.2. Использование голосового API Google
Google предоставляет собственный Speech API, который можно реализовать в коде Python и использовать для создания различных приложений.
recognize speech using Google Speech Recognition
try:
print("Google Speech Recognition thinks you said " +
r.recognize_google(audio))
except sr.UnknownValueError:
print("Google Speech Recognition could not understand audio")
except sr.RequestError as e:
print("Could not request results from Google Speech
Recognition service;{0}".format(e))

10.5.3. Использование Google Cloud Speech API
Вы также можете использовать Google Cloud Speech API для преобразования. Создайте учетную запись в Google Cloud и скопируйте учетные данные.
GOOGLE_CLOUD_SPEECH_CREDENTIALS = r"INSERT THE CONTENTS OF THE GOOGLE CLOUD SPEECH JSON CREDENTIALS FILE HERE"
try:
print("Google Cloud Speech thinks you said " +
r.recognize_google_cloud(audio, credentials_json=GOOGLE_
CLOUD_SPEECH_CREDENTIALS))
except sr.UnknownValueError:
print("Google Cloud Speech could not understand audio")
except sr.RequestError as e:
print("Could not request results from Google Cloud Speech
service; {0}".format(e))

10.5.4. Использование Wit.ai API
API Wit.ai позволяет вам преобразовать речь в текст. Вам нужно создать учетную запись, а затем создать проект. Скопируйте свой ключ Wit.ai и начните программировать.
#recognize speech using Wit.ai
WIT_AI_KEY = "INSERT WIT.AI API KEY HERE" # Wit.ai keys are
32-character uppercase alphanumeric strings
try:
print("Wit.ai thinks you said " + r.recognize_wit(audio,
key=WIT_AI_KEY))
except sr.UnknownValueError:
print("Wit.ai could not understand audio")
except sr.RequestError as e:
print("Could not request results from Wit.ai service; {
0}".
format(e))

10.5.5. Использование Google Cloud Speech API
Вы также можете использовать Google Cloud Speech API для преобразования. Создайте учетную запись в Google Cloud и скопируйте учетные данные.
GOOGLE_CLOUD_SPEECH_CREDENTIALS = r"INSERT THE CONTENTS OF THE GOOGLE CLOUD SPEECH JSON CREDENTIALS FILE HERE"
try:
print("Google Cloud Speech thinks you said " +
r.recognize_google_cloud(audio, credentials_json=GOOGLE_
CLOUD_SPEECH_CREDENTIALS))
except sr.UnknownValueError:
print("Google Cloud Speech could not understand audio")
except sr.RequestError as e:
print("Could not request results from Google Cloud Speech
service; {0}".format(e))

10.5.6. Использование Wit.ai API
API Wit.ai позволяет вам преобразовать речь в текст. Вам нужно создать учетную запись, а затем создать проект. Скопируйте свой ключ Wit.ai и начните программировать.
#recognize speech using Wit.ai
WIT_AI_KEY = "INSERT WIT.AI API KEY HERE" # Wit.ai keys are
32-character uppercase alphanumeric strings
try:
print("Wit.ai thinks you said " + r.recognize_wit(audio,
key=WIT_AI_KEY))
except sr.UnknownValueError:
print("Wit.ai could not understand audio")
except sr.RequestError as e:
print("Could not request results from Wit.ai service; {
0}".
format(e))

10.5.7. Использование Houndify API
Как и в случае с предыдущими API, вам необходимо создать учетную запись в Houndify и получите свой идентификатор клиента и ключ. Это позволяет вам создать приложение, которое реагирует на звук.
recognize speech using Houndify
HOUNDIFY_CLIENT_ID = "INSERT HOUNDIFY CLIENT ID HERE"
Houndify client IDs are Base64-encoded strings
HOUNDIFY_CLIENT_KEY = "INSERT HOUNDIFY CLIENT KEY HERE"
Houndify client keys are Base64-encoded strings
try:
print("Houndify thinks you said " + r.recognize_
houndify(audio, client_id=HOUNDIFY_CLIENT_ID, client_
key=HOUNDIFY_CLIENT_KEY))
except sr.UnknownValueError:
print("Houndify could not understand audio")
except sr.RequestError as e:
print("Could not request results from Houndify service;
{0}".format(e))

10.5.8. Использование IBM Speech to Text API
IBM Speech to Text API позволяет вам добавлять возможности распознавания речи IBM в свои приложения. Войдите в облако IBM и запустите свой проект, чтобы получить имя пользователя и пароль IBM.
IBM Speech to Text
recognize speech using IBM Speech to Text
IBM_USERNAME = "INSERT IBM SPEECH TO TEXT USERNAME HERE" # IBM
Speech to Text usernames are strings of the form XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
IBM_PASSWORD = "INSERT IBM SPEECH TO TEXT PASSWORD HERE" # IBM
Speech to Text passwords are mixed-case alphanumeric strings
try:
print("IBM Speech to Text thinks you said " + r.recognize_
ibm(audio, username=IBM_USERNAME, password=IBM_PASSWORD))
except sr.UnknownValueError:
print("IBM Speech to Text could not understand audio")
except sr.RequestError as e:
print("Could not request results from IBM Speech to Text
service; {0}".format(e))

10.5.9. Использование API распознавания голоса Bing
Этот API распознает звук, исходящий от микрофона, в режиме реального времени. Создайте учетную запись на Bing.com и получите ключ API распознавания голоса Bing.
recognize speech using Microsoft Bing Voice Recognition
BING_KEY = "INSERT BING API KEY HERE" # Microsoft Bing Voice
Recognition API key is 32-character lowercase hexadecimal strings
try:
print("Microsoft Bing Voice Recognition thinks you said " +
r.recognize_bing(audio, key=BING_KEY))
except sr.UnknownValueError:
print("Microsoft Bing Voice Recognition could not
understand audio")
except sr.RequestError as e:
print("Could not request results from Microsoft Bing Voice
Recognition service; {0}".format(e))

После того, как вы преобразовали речь в текст, вы не можете ожидать 100-процентной точности. Для измерения точности можно использовать WER.
10.6. Преобразование текста в речь
Этот раздел главы посвящен преобразованию письменного текста в аудиофайл.
10.6.1. Использование pyttx
Используя пакет Python под названием pyttsx, вы можете преобразовывать текст в аудио.
Сделайте pip-установку pyttsx. Если вы используете python 3.6, выполните pip3, чтобы установить pyttsx3.
import pyttsx
engine = pyttsx.init()
engine.say("Your Message")
engine.runAndWait()

10.6.2. Использование SAPI
Вы также можете использовать SAPI для преобразования текста в речь в Python.
from win32com.client import constants, Dispatch
Msg = "Hi this is a test"
speaker = Dispatch("SAPI.SpVoice") #Create SAPI SpVoice Object
speaker.Speak(Msg) #Process TTS
del speaker

10.6.3. Использование библиотеки речи
Вы можете взять ввод из текстового файла и преобразовать его в аудио, используя SpeechLib, как показано здесь:
from comtypes.client import CreateObject
engine = CreateObject("SAPI.SpVoice")
stream = CreateObject("SAPI.SpFileStream")
from comtypes.gen import SpeechLib
infile = "SHIVA.txt"
outfile = "SHIVA-audio.wav"
stream.Open(outfile, SpeechLib.SSFMCreateForWrite)
engine.AudioOutputStream = stream
f = open(infile, 'r')
theText = f.read()
f.close()
engine.speak(theText)
stream.Close()

Много раз вам приходилось редактировать звук, чтобы удалить голос из аудиофайла. В следующем разделе показано, как это сделать.
10.6.4. Код нарезки аудио
Создайте CSV-файл аудио, содержащий разделенные запятыми значения деталей аудио, и выполните следующие действия с помощью Python:
import wave
import sys
import os
import csv

origAudio = wave.open('Howard.wav', 'r') #change path
frameRate = origAudio.getframerate()
nChannels = origAudio.getnchannels()
sampWidth = origAudio.getsampwidth()
nFrames = origAudio.getnframes()
filename = 'result1.csv' #change path
exampleFile = open(filename)
exampleReader = csv.reader(exampleFile)
exampleData = list(exampleReader)
count = 0
for data in exampleData:
#for selections in data:
print('Selections ', data[4], data[5])
count += 1
if data[4] == 'startTime' and data[5] == 'endTime':
print('Start time')
else:
start = float(data[4])
end = float(data[5])
origAudio.setpos(start*frameRate)
chunkData = origAudio.readframes(int((end-start)*
frameRate))
outputFilePath = 'C:/Users/Navin/outputFile{0}.wav'.
format(count) # change path
chunkAudio = wave.open(outputFilePath, 'w')
chunkAudio.setnchannels(nChannels)
chunkAudio.setsampwidth(sampWidth)
chunkAudio.setframerate(frameRate)
chunkAudio.writeframes(chunkData)
chunkAudio.close()

10.7. Поставщики когнитивных услуг
Давайте посмотрим на некоторых поставщиков когнитивных услуг, которые помогают с обработкой речи.
10.7.1. Microsoft Azure
Microsoft Azure предоставляет следующее:
· Custom Speech Service: позволяет преодолеть барьеры распознавания речи, такие как стиль речи, словарный запас и фоновый шум.
· Translator Speech API: обеспечивает перевод речи в режиме реального времени.
· API идентификации говорящего: это может идентифицировать говорящего на основе образца речи каждого говорящего в заданных аудиоданных.
· Bing Speech API: преобразует звук в текст, понимает намерения и преобразует текст обратно в речь для естественного отклика.

10.7.2. Когнитивные сервисы Amazon
Amazon Cognitive Services предоставляет сервис Amazon Polly, который преобразует текст в речь. Amazon Polly позволяет создавать говорящие приложения, что позволяет создавать совершенно новые категории продуктов с поддержкой речи.
· Можно использовать 47 голосов и 24 языка, а также предоставляется вариант индийского английского языка.
· К определенным частям речи можно добавлять такие тона, как шепот, гнев и т. д., с помощью эффектов Amazon.
· Вы можете указать системе, как произносить определенную фразу или слово по-другому. Например, «W3C» произносится как World Wide Web Consortium, но вы можете изменить это, чтобы произносить только аббревиатуру. Вы также можете предоставить входной текст в формате SSML.

10.7.3. Услуги IBM Watson
Есть два сервиса от IBM Watson.
· Преобразование речи в текст: США. английский, испанский и японский
· Преобразование текста в речь: США. английский, Великобритания английский, испанский, французский, итальянский и немецкий

10.8. Будущее речевой аналитики
Технология распознавания речи сделала большой шаг вперед. Каждый год он примерно на 10–15 процентов точнее, чем в предыдущем году. В будущем он обеспечит самый интерактивный интерфейс для компьютеров.
Есть много приложений, которые вы скоро увидите на рынке, включая интерактивные книги, роботизированное управление и интерфейсы для беспилотных автомобилей. Речевые данные открывают новые захватывающие возможности, потому что за ними будущее отрасли. Речевой интеллект позволяет людям отправлять сообщения, принимать или отдавать приказы, подавать жалобы и выполнять любую работу, в которой они привыкли печатать вручную. Он предлагает отличный опыт работы с клиентами, и, возможно, именно поэтому все отделы и предприятия, работающие с клиентами, склонны очень активно использовать речевые приложения. Я вижу большое будущее для разработчиков речевых приложений.
image1.emf

image2.emf

image3.emf

